Stable Banach Spaces and Banach Space Structures, I: Fundamentals

نویسنده

  • JOSÉ IOVINO
چکیده

We study model theoretical stability for Banach spaces and structures based on Banach spaces, e.g., Banach lattices or C∗-algebras. We prove that a theory is stable if and only if the following condition is true in every model E of the theory: If (ām ) and (b̄n) are bounded sequences in Ek and El (respectively) and R : Ek × El → R is definable, then there exist subsequences (āmi ) and (b̄n j ) such that lim i→∞ lim j→∞ R(āmi , b̄n j ) = lim j→∞ lim i→∞R(āmi , b̄n j ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indiscernible sequences in Banach space geometry

0. Introduction 2 The impact of logic in Banach space theory 2 The case of model theory 2 Model theory for structures of functional analysis 3 Two famous applications 4 A note on the exposition 4 1. Preliminaries: Banach Space Models 5 Banach space structures and Banach space ultrapowers 5 Positive bounded formulas 7 Approximate satisfaction 8 (1 + )-isomorphism and (1 + )-equivalence of struct...

متن کامل

Stable Banach Spaces and Banach Space Structures, Ii: Forking and Compact Topologies

We study model theoretical stability for structures from functional analysis. We prove a functional-analytic version of the Finite Equivalence Relation Theorem. We also the Stability Spectrum Theorem for Banach space structures.

متن کامل

Extensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces

Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let  $u, v$ be  positive numbers. In this paper, we show  that  the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995